
Population pharmacokinetic (PPK) models have a wide
range of application both to direct patient care and

drug development. There are several advantages to em-
ploying PPK models compared with traditional pharma-
cokinetic model development. The previous installment of
this series addressed the types of conceptual models neces-
sary for an understanding of PPK.1 The current installment
explains the various methods used to estimate PPK models.

Over the past two and half decades, a variety of methods
have been proposed for the characterization of the PPK of
drugs. A discussion of some of the methods follows and is
the focus of this section. The goals of a PPK analysis and the
data type will determine the method selected for the analysis.

Methods Applied to Population 
Pharmacokinetic Modeling

NAÏVE AVERAGE DATA APPROACH

It is common practice in preclinical and clinical pharma-
cokinetics to perform studies in which the drug administra-
tion and sampling schedules are identical for all subjects.
For this type of analysis, there are as many data points as
there are individuals at each sampling time. Analysis of
such data using the naïve averaging of data (NAD) ap-
proach consists of the following procedure.
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(1) Computing the average value of the data for each
sampling time:

N
ȳi = 1/N Σ yij Eq. 1

j = 1

for i = 1,…., n where n is the standard number of individu-
al data. The averaging of data across individuals makes
sense, because all yij for j = 1, …, N have been measured
under identical conditions. 

(2) A model ym = ƒ(φ) is fitted to the mean data n-vector
ȳ = (̄y1,….ȳn)t and estimates the best-fit parameter values
φ*. The latter notation (φ*) is used to distinguish it from
individual estimates, denoted ^φ.

The NAD approach is attractive because of its simplici-
ty. One unique fitting is sufficient for obtaining estimates
of parameters describing the mean response. φ* Compo-
nents are quite often interpreted as “mean” parameter val-
ues. Correspondingly, ^µNAD will be used for φ* in the lat-
ter. The method is widely applicable in experimental data
(EP) studies with standardized designs, including bioavail-
ability, bioequivalence, and dose proportionality studies.
Because of the smoothing effect of averaging, mean data
generally look nicer than individual data, and better fitting
often results when compared with individual data.

However, the NAD approach provides an estimate of
the ^µNAD sample mean. In this regard, several drawbacks
of this approach must be pointed out. The use of NAD to
establish a pharmacokinetic model may be misleading.
Data averaging can, quite often, produce a distorted picture
of the response. Averaging of monoexponential data from
2 subjects with very different half-lives has been shown to
produce a mean curve that exhibits an apparent biexponen-
tial decay.2 Sometimes the opposite situation is the case.
The smoothing effect of the averaging will tend to obscure
peculiarities that can be seen in individual data. The exis-
tence of secondary peaks in the plasma level–time course
of individuals may be undetectable in the average curve if
the rebounds occur at different time points.

NAD also performs poorly in terms of parameter esti-
mation. The reference to individual data disappears after
data averaging. All sources of variability are confounded.
Because of this, important information on drug disposition
is obscured. The average concentration curve derived with
the NAD approach does not necessarily follow the individ-
ual model function. A wrong model may be obtained.3 Un-
defined statistical uncertainties and large “unknown” sub-
ject variations might smooth the average response curve in
an unpredictable manner. Thus, the NAD estimate ^µNAD

should not, as a general rule, be regarded as a valuable esti-
mate of the expected value of pharmacokinetic parameters.
This rule holds even if the true model, that is, the one that
adequately describes the individual data, has been used for
the fitting. The essential parametric nonlinearity of phar-
macokinetic models is responsible for this. 

Exceptions to this rule occur when the signal-to-noise
ratio is small. This is the case when variability contributes
less to the spread in observations than other sources of
fluctuation (inter-occasion variability, measurement error,

model misspecification). This situation might be seen
when concentrations are measured in standardized labora-
tory animals. The quality of estimates may be improved by
using averaging methods other than the straightforward
arithmetic mean.4 These ad hoc solutions do not funda-
mentally solve the problem. Moreover, no estimate of pure
interindividual variability can be obtained with the NAD
approach because it masks variability rather than reveals it.
Thus, the NAD approach is not a reliable method for phar-
macokinetic data analysis. 

NAÏVE POOLED DATA ANALYSIS 

Sheiner and Beal5 proposed the naïve pooled data (NPD)
approach for the method in which all data from all individ-
uals are considered as arising from one unique individual.

This reference subject is characterized by a set of pa-
rameters φ̄. With least-squares fitting, φ̄ will be the parame-
ter vector minimizing the global objective function.

N
ONPD(φ) = Σ {

nj

Σ [yij — ƒij(φ)]2} Eq. 2
j = 1 i = 1

where {ƒij, i = 1,….,nj} is the set of components of ƒj, and
the summation is over all individuals and all measure-
ments for a given individual.

Unlike the NAD approach, the NPD approach is far
more general. It can easily deal with experimental data,
nonstandard data, and routine pharmacokinetic data. After
a unique fitting of all data at once, parameter estimates are
obtainable. It may perform well when variations between
subjects are small. This is occasionally the case in a group
of homogeneous laboratory animals from a given strain,
but it is rarely true for humans. The drawbacks of NPD are
the same as those of NAD, as has been repeatedly pointed
out.6-8 The NPD approach tends to confound individual
differences and diverse sources of variability in a manner
different from the NAD approach, but with similar nega-
tive consequences. The NPD estimate for the reference in-
dividual φ̄ should be considered as a rough approximation
(^µNPD) of the population expectation µ, although the con-
sequences of the omission can be minor.9 In addition, esti-
mates of the dispersion of parameters in the population are
not provided. Extrapolation of mean outcomes on the basis
of the set of estimates ^µNPD should be done with caution. 

These problems notwithstanding, it has been shown
that, for several drugs used in anesthesia, a pooled analysis
approach provided population mean parameters that, when
prospectively tested, accurately predicted drug concentra-
tions after drug administration by a computer-controlled
infusion pump.10-12 The data in all circumstances originated
from well-controlled experiments with extensive sampling.
That is, the data were of the EP type (see the installment of
articles in this series of tutorials). Moreover, the NPD anal-
ysis provided similar population mean parameter estimates
compared with estimates obtained using several other pop-
ulation analysis methods.13,14 These findings are in contrast
with an earlier simulation study which showed that the
NPD approach provided biased estimates of the population
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mean parameters even when a well-balanced experimental
study design was used.6 The discrepancy may be due to the
large amount of interindividual variability present or inap-
propriate weighting scheme used in the latter study.

Imbalance and confounding correlations present in a
data set pose serious problems for the NPD approach.
These features are prevalent in observational data and
make the NPD approach inappropriate for this type of
data. Data imbalance occurs when there are many more
observations taken from some individuals than others. An
example would be a case where 6 samples are taken from
some individuals, 4 from some others, and one from others. 

When the design of the study correlates with the out-
come, confounding correlations occur. That is, the presence
or absence of an observation is dependent on the subject’s
pharmacokinetics. Confounding correlations are usually
prevented with randomization. This, however, is not guar-
anteed with observational data. A case in point would be a
pharmacokinetic study in which concentrations fall below
the limit of quantitation during the study. Only individuals
with the smallest clearance or largest volume of distribu-
tion would contribute measurable concentrations toward
the end of the study. Biased estimate of the terminal half-
life will result and may be wrongly interpreted as an addi-
tional phase of the pharmacokinetic profile. Clearly, the
NPD approach should not be used in this setting.

THE TWO-STAGE APPROACH

With this approach, individual parameters are estimated
in the first stage by separately fitting each subject’s data
and then, in the second stage, obtaining parameters across
individuals, thus obtaining population parameter estimates.
The data are summarized in the set [(^φj, Mj), j = 1,….., N].
^φj Is the p-vector of the parameter estimates and the p × p
symmetric variance–covariance matrix of the correspond-
ing individual estimate. To derive values for population
characteristics according to a given strategy, the individual
parameter estimates are combined. The salient features of
the methods that constitute the two-stage approach are dis-
cussed briefly.

Standard Two-Stage Approach

The standard two-stage (STS) approach refers to a well-
known and widely used procedure. Population characteris-
tics of each parameter are estimated as the empirical mean
(arithmetic or geometric) and variance of the individual es-
timates ^φj according to the following equations:

N
^µSTS = 1/N Σ ^φj Eq. 3

j = 1

N
^ΩSTS = 1/N Σ (^φj — ^µSTS)2 Eq. 4

j = 1

The estimate of the standard deviation (^s) is easily ob-
tained by taking the square root of ^Ω. N — p can be used
instead of N in the denominator of the variance estimate. 

With the STS approach, estimates of individual parame-
ters are combined as if the set of estimates were a true N-
sample from a multivariate distribution. It has been recom-
mended as a very simple and valuable approach for pooling
individual estimates of pharmacokinetic parameters de-
rived from experimental pharmacokinetic studies.15 The
advantage of the STS approach is its simplicity, but the va-
lidity of its results should not be overemphasized. Howev-
er, it has been shown from simulation studies that the STS
approach tends to overestimate parameter dispersion (the
variance–covariance matrix).6,16

Global Two-Stage Approach

The ^φ can be viewed as observations of the individual
parameters. The estimate for a subject may be biased and
imprecise because of poor experimental design, poor study
execution, or a high level of measurement error. The glob-
al two-stage (GTS) approach makes extensive use of the
matrices |Mj, j = 1,…., N|, which reflect the deviations
(bias), together with the estimates |^φj, j = 1,….., N|. The
expectation E(.) and the variance–covariance Var(.) of each
(random) ^φj can be calculated as:

E(^φj) = µ for j = 1, ....., N Eq. 5
Var(^φj) = Mj + Ω for j = 1, ….., N Eq. 6

where µ is the true population expectation and Ω is the true
population variance–covariance. An extensive description
of the method is provided by Steimer et al.16 The GTS ap-
proach provides a maximum likelihood estimate of µ and
Ω by an iterative method. It assumes that the estimates of in-
dividual parameters are normally distributed around the true
parameters with variance Varj. The population parameters θ
are the p components of the vector µ and the p(p + 1)/2 inde-
pendent components of the symmetric matrix Ω. The objec-
tive function to be minimized is as follows:

N
OGTS(µ, Ω) = Σ

j = 1
[(^φj — µ)t (Mj + Ω)-1(^φj — µ) +

ln det(Mj + Ω)] Eq. 7

The first term in the right side of Equation 7 is the summa-
tion (over individuals) of the weighted squared deviations
of individual estimates from the expected value µ. The
weighting matrix is dependent on the quality of the esti-
mate through the factor (Mj + Ω)-1. The last term in the
equation is the logarithm of the determinant of the (Mj +
Ω) matrix. It prevents the variance–covariance matrix from
going to zero through its determinant. 

The GTS approach has been shown, through simulation,
to provide unbiased estimates of the population mean pa-
rameters and their variance–covariances, whereas the esti-
mates of the variances were upwardly biased if the STS
approach was used.16 These simulations were done under
the ideal situation that the residual error was normally dis-
tributed with a known variance. However, it is a well-known
fact that the asymptotic covariance matrix used in the calcu-
lations is approximate and, under less ideal conditions, that
the approximation can be poor.17,18
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The Iterative Two-Stage Approach 

A computationally “heavier” two-stage method that re-
lies on repeated fittings of individual data, the iterative
two-stage (IT2S) approach, has been described.16,19,20 The
IT2S approach can be implemented with rich data, sparse
data, or a mixture of both. An approximate a priori popula-
tion model is required to initiate the procedure. Provided
that considerable informative data are available, the popu-
lation values may be obtained from the literature, the NPD
approach performed with the current study data and a rea-
sonable choice of parameter variability, or the STS ap-
proach.16 As the name implies, the IT2S approach is imple-
mented in 2 stages. In the first stage, the population model
is used as the set of prior distributions for Bayesian estima-
tion of the individual parameters for all patients, irrespec-
tive of the number of samples supplied by each individual. 

In the second stage, the population parameters are recal-
culated with these new individual parameters in order to
form the new set of prior distributions. The estimation pro-
cess (ie, parameters from the second stage are used for a
repeat of the first stage and the results are used for a repeat
of the second stage) is repeated until the difference be-
tween the new and old prior distributions is essentially
zero. The method may be implemented with programs
supporting Bayesian estimation and least-squares regres-
sion or with the IT2S routine,20 which has been implement-
ed with the USC*PACK collection of programs.21

A method close to the IT2S procedure is the expecta-
tion-maximization–like (EM) method presented by Mentre
and Geomeni.22 It can be viewed as an extension of IT2S
when both random and fixed effects are included in the
model and for heteroschedastic errors known to a propor-
tionality coefficient. This algorithm is implemented with
the software P-PHARM.23

Bayesian Two-Stage Approach

A method that is Bayesian in nature is that proposed by
Racine-Poon.24 The method uses the estimates of the indi-
vidual parameters φj and asymptotic variance matrix Vj ob-
tained from the individual fits, with very weak assumptions
about the prior distribution of the population parameters to
calculate a posterior density function from which φ and Ω
can be obtained. In an iterative method suggested by
Dempster et al.,25 the EM algorithm is used to calculate the
posterior density function. Simulation studies in which
several varying and realistic conditions were assumed have
shown that the Bayesian two-stage approach provides
good estimates of PPK and pharmacodynamic parame-
ters.24,26

THE NONLINEAR MIXED-EFFECTS MODEL APPROACH

The first attempt at estimating interindividual pharma-
cokinetic variability without neglecting the difficulties (eg,
data imbalance, sparse data, subject-specific dosing histo-
ry) associated with data from patients undergoing drug
therapy was made by Sheiner et al.27 using the nonlinear

mixed-effects model approach. The vector θ of population
characteristics is composed of all quantities of the first 2
moments of the distribution of the parameters: the mean
values (fixed effects) and the elements of the variance–co-
variance matrix that characterize random effects.5,6,8,28-30

The number of samples per subject used for this ap-
proach is typically small, ranging from 1 to 6. The difficul-
ties associated with this type of data preclude the use of the
STS approach because there are not enough data to sepa-
rately estimate the pharmacokinetic parameters for each
subject. There are too few measurements to estimate the
parameters accurately or the model may be unidentifiable
in a specific individual. As does the pooled analysis tech-
nique, nonlinear mixed-effects modeling approaches ana-
lyze the data of all individuals at once, but take the in-
terindividual random effects structure into account. This
ensures that confounding correlations and imbalance that
may occur in observational data are properly accounted for. 

Most of the nonlinear mixed-effects modeling methods
estimate the parameters by the maximum likelihood ap-
proach. The probability of the data under the model is writ-
ten as a function of the model parameters, and parameter
estimates are chosen to maximize this probability. This
amounts to asserting that the best parameter estimates are
those that render the observed data more probable than
they would be under any other set of parameters.

It is difficult to calculate the likelihood of the data for
most pharmacokinetic models because of the nonlinear de-
pendence of the observations on the random parameters ηi

and possibly εij. To deal with these problems, several ap-
proximate methods have been proposed. These methods,
apart from the approximation, differ widely in their repre-
sentation of the probability distribution of interindividual
random effects.

First-Order (NONMEM) 

The first nonlinear mixed-effects modeling program in-
troduced for the analysis of large amounts of pharmacoki-
netic data was NONMEM.31 In the NONMEM program,
linearization of the model in the random effects is effected
by using the first-order (FO) Taylor series expansion with
respect to the random effect variables ηi and εij. This soft-
ware is the only program in which this type of linearization
is used. 

The jth measurement in the ith subject of the population
can be obtained from a variant of Equation 5 in the first tu-
torial as follows:

yij = ƒ(φ, xij,ηi) + εij Eq. 8
The FO Taylor series expansion of the above model with
respect to the random variables ηi (intersubject variability)
and εij (residual variability) around zero is given by

yij = ƒ(φ, xij) + Gij(φ, xij)ηi + εij Eq. 9
where 

Gij(φ, xij) = δƒ(θ,xijηi,εij)/δηi
Tηηi = 0 Eq. 10

Gij(φ, xij) is 1 × p matrix of the first derivatives of
ƒ(θ,xijηi,εij) with respect to ηi, evaluated at ηi equals zero.
In Equation 9, the model is linear in εij; therefore, no ap-
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proximation is made with respect to εij. Logarithmic trans-
formation of the data can be done to ensure linearity in εij.

The random effect parameters ηi and εij are independent
(multivariate), normally distributed with zero means and
variances Ω and σ2, respectively. Ω Is the p × p covariance
matrix of the p vector ηi. Based on the fact that ηi and εij

are independent and identically normally distributed, and
the linearization of Equation 9, the expectation and vari-
ance–covariance of all observations for the ith individual
(first 2 moments) are given by:

Ei = ƒ(θ,xi) Eq. 11
and 

Ci =Gi((θ,xi)ΩGi(θ,xi)T + σ2Ini Eq. 12
where ƒ(θ,xi) is the vector of model predictions of yi,
Gi((θ,xi) represents the ni × p matrix of first derivatives of
ƒ(θ,xi,ηi,εi) with respect to ηi evaluated at ηi equals zero,
and Ini represents the identity matrix of size ni. Maximum
estimates of the population parameters θ, Ω, and σ2 can be
obtained by minimizing minus twice the logarithm of pop-
ulation likelihood as expressed below:

N
–2LL = Σ(log(det(Ci)) + (yi – Ei)TCi

-1(yi — Ei)) Eq. 13
i = 1

This approach is called the FO method in NONMEM.
This is the most widely used approach in PPK and phar-
macodynamic data analysis and has been evaluated by
simulation. The use of the FO Taylor series expansion to
approximate the nonlinear model in ηi and possibly εij by a
linear model in these parameters is the greatest limitation
of the FO approach. 

The performance of the FO approach for the analysis of
observational and experimental data has been evaluated by
Sheiner and Beal with the Michaelis–Menten pharmacoki-
netic model5 and the 1- and 2-compartment models.6,7 In all
instances, a comparison was made with the NPD and STS
approaches for the analysis of the 2 types of data. The FO
approach outperformed the NPD and the STS approaches
on both data types. Despite the approximation, the FO ap-
proach provides good parameter estimates. When the
residual error increases, the STS approach quickly deterio-
rates, especially with respect to variance parameters. How-
ever, the STS approach still performs reasonably well, but
the bias and imprecision of the estimates tend to increase
with increasing residual error.7 Estimates of residual ran-
dom effects have been shown to deteriorate with the FO
approach when residual error increases.32

Deterioration in parameter estimation has been observed
in simulation studies in which the value of the intersubject
variability was >60% and the residual variability was set at
15%.33 A series of studies in which observations were ran-
domly deleted from a data-rich set to create a sparse data
set and parameter estimation was done using the FO
method showed good performance of the FO approach
compared with the results obtained using the full data
set.34-38 The correspondence of the results in the 2 situa-
tions suggests that the FO approach can be used to esti-
mate parameters using only a few observations per indi-
vidual. Simulation studies have been performed to show

that the FO approach can be used in the limiting case where
only one sample is obtained per subject.39 In this case, there
is an upper limit of residual variability (not exceeding 20%)
for the production of reliable parameter estimates.

The impact of the linearization approximation of the
FO approach for a simple 1-compartment model was eval-
uated by Beal.29 He compared the performance of this ap-
proach with the exact solution to the population likeli-
hood. No difference was observed, which indicated that
the approximation used in the FO method is not detrimen-
tal to the analysis under the conditions evaluated, which in-
cluded an interindividual variability set at 25% (CV%).
Other simulation studies, however, have shown that the FO
approach has a potential for providing modestly biased es-
timates.6,18,28,34,40-43

For a 1-compartment multidose scenario, White et al.18

showed that biased estimates are more likely when residu-
al and intersubject variability are very high. Ette et al.33 ob-
served that the biased estimates are obtained at high levels
of intersubject variability with a 2-compartment multidose
situation, although the residual variability did not exceed
15%. The bias may be due to the fact that the FO Taylor
series expansion is not a particularly good approximation
of the underlying “real” (log-normal) distribution used to
generate the simulated data in these studies. Also, it may
be that the FO Taylor series expansion is evaluated at ηi

equals zero (the population mean estimate of ηi). This may
not be a good approximation depending on the magnitude
of intersubject variability and the nonlinearity of the phar-
macokinetic model. During data analysis, this can be com-
pensated for, in part, by including explanatory covariates in
the model to reduce the variance of ηi. With a 1-compart-
ment model experimental data set, the GTS approach was
shown to outperform the FO approach with respect to bias
and precision of both the population mean and variance es-
timates. Similar results were obtained in a study in which
the FO approach was compared with the Bayesian two-
stage approach.40

The NONMEM program implements 2 alternative esti-
mation methods: the FO conditional estimation (FOCE) and
the Laplacian methods.31 The FOCE method uses an FO ex-
pansion about conditional estimates (empirical Bayesian esti-
mates) of the interindividual random effects rather than
about zero.44 In this respect, it is like the conditional FO
method of Lindstrom and Bates.45 Unlike the latter, which
is iterative, a single objective function is minimized,
achieving a similar effect as with iteration. The Laplacian
method uses second-order expansions about the condition-
al estimates of the random effects.44

Conditional First-Order (NLME)

The conditional FO method of Lindstrom and Bates45

uses an FO Taylor series expansion about conditional esti-
mates of interindividual random effects. Estimation in-
volves an iterative generalized least-squares type algo-
rithm. This estimation method is available in S-PLUS as
the function NLME.46
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Alternative First-Order (MIXNLIN)

This method, proposed by Vonesh and Carter,47 also
uses an FO series expansion of the interindividual random
effects. They proposed the use of estimated generalized
least squares and established the asymptotic properties of
the resulting estimates. An alternative method is the use of
the iteratively reweighted generalized least squares.48 The
MIXNLIN program also implements pseudo maximum like-
lihood (ML) and restricted maximum likelihood (REML) es-
timation by embedding the EM algorithm within an iterative-
ly reweighted generalized least-squares routine. Expansion is
either about zero or about the empirical best linear unbiased
predictor (EBLUP) of the interindividual random effects.
Only the fixed-effects and variance component estimates
are updated after each call to the embedded EM algorithm
(ie, the method uses the EBLUP estimates inherent within
the EM algorithm only to update estimates of the variance
components) when the expansion is about zero. ML esti-
mation expanded about zero should result in estimates sim-
ilar to those obtained using the NONMEM FO method,
while expansion about the EBLUP should result in estimates
similar to those obtained with the FOCE  in NONMEM and
the FO conditional method (NLME). These estimation
methods are available in the SAS macro and MIXNLIN
3.0 version of Vonesh.48

Alternative First-Order (SAS) 

This is an FO Taylor series expansion method, but the
algorithm consists of iteratively fitting a set of generalized
estimating equations until they stabilize.49 The method uses
a Taylor series expansion in the fixed-effects parameters,
as well as one in the random effects; expansion is about the
generalized least-squares estimates for the fixed-effects pa-
rameters and about zero for the random effects. It yields
estimates similar to those obtained using the FO method of
NONMEM. The method is implemented in the SAS macro
NLINMIX. The NLINMIX program also implements ex-
pansion about the EBLUPs of the interindividual random
effects as an alternative to expansion about zero, yielding
estimates similar to those produced with the FOCE
method in NONMEM.

Nonparametric Maximum Likelihood (NPML)

The NPML approach provides an estimate of the whole
probability distribution of the pharmacokinetic parameters
on a nonparametric basis.50 The method relies on maxi-
mization of the likelihood of the set of observations of all
individuals to estimate the distribution of the parameters.
The basic conceptual framework is similar to that de-
scribed above for NONMEM. The difference is that no
specific model for the relationship between pharmacoki-
netic parameters and patient-specific covariates is speci-
fied. The individual parameters φi are assumed to be inde-
pendent realizations of a given random variable Φ with
probability distribution F(φ). The likelihood of all data is
given by:

N
L(F) = Π ∫D li(yi|φ)F(φ)dφ Eq. 14

i = 1

where li(yi|φ) is the likelihood of the observations yi for ith
individual, given φ. D is the domain in which the parame-
ters lie. Maximization of this likelihood provides an esti-
mate ^F of the probability distribution of the parameters.
This distribution has been proven by Mallet to be discrete,
involving Np locations, where Np is less than or equal to
the number of individuals (N). To estimate the Np locations
qk and their corresponding frequencies αk, a specific algo-
rithm was developed. The level of residual error and how
well the parameters are known determines the number of
locations. There will be N locations, each with a frequency
of 1/N if the parameters are known very precisely for all N
subjects. The set of locations qk and frequencies αk com-
pletely specify the estimate of the distribution of the pa-
rameters:

Np

^F = ∑αk • δ(qk) Eq. 15
k = 1

where δ(x) denotes the Dirac probability distribution,
which takes the value 1 at x and 0 elsewhere. With this
method, a complete distribution of F with very soft as-
sumptions, namely that F takes only positive values and
that its integral over D domain, is equal to unity.50,51 The
NPML approach has been shown in a simulation study as-
suming a 1-compartment pharmacokinetic model with bi-
modal distribution to produce parameter estimates that ac-
curately describe the distribution, even though only one
measurement was available per individual.52 Several sum-
mary statistics, such as mean or variance–covariance ma-
trix, can easily be calculated from the distribution of F
specified by Equation 15.

The method also allows for the inclusion of patient-spe-
cific covariates without the specifying a priori relationship
between the pharmacokinetic parameters and covariates.
The covariates are regarded as additional parameters, and
the algorithm provides an estimate of the joint distribution
of the pharmacokinetic parameters and the covariates.53

The probability distribution of the parameters condition-
al on any value of the covariates can be computed and
used for the initial dosage selection, given the distribu-
tion obtained. Thus, the shape of the relationship be-
tween parameters and covariates can be explored non-
parametrically.

The major limitation of this approach is that the residual
error must be known a priori. The method, therefore, is
nonparametric with respect to the interindividual random
effects, but requires the intraindividual error to be specified
a priori. Pharmacokinetic analyses performed with the
NPML approach and reported in the literature have used
the residual error model based on drug concentration mea-
surement assay variance.52-55 This seems to be unrealistic.
Intraindividual variability, inter-occasion variability, and
model misspecification often will contribute significantly
to the residual error.56,57
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Also, the estimator of the distribution produced by the
NPML approach is a point estimator, and no results on the
accuracy of the estimation are obtained. Consequently,
care should be taken in interpreting the results, especially
when they are obtained from a small sample size. If the
NPML approach is used primarily for exploratory analysis
to improve the efficiency of subsequent parametric analy-
sis, this may not be much of a problem. The NPML ap-
proach is a computationally expensive approach, which
may limit the practicality of the approach when the dimen-
sion of the parameter space increases. An example of this
would be the case of a complex pharmacokinetic model
with numerous covariates.

The nonparametric expectation–maximization (NPEM)
program of Schumitzky,58 which is similar to the NPML
program of Mallet,50 computes the nonparametric ML us-
ing the nonparametric EM algorithm. NPEM has been de-
veloped as a segment of the USC*PACK collection of pro-
grams.21 The results obtained using NPEM for PPK data
analysis are similar to those of the NPML program. NPEM
and STS give virtually identical estimates of PPK parame-
ters in the same population when the results of NPEM in-
dicate normal distribution for parameter estimates.59,60

Seminonparametric Maximum Likelihood (SNP)

Davidian and Gallant61 introduced the SNP maximum
likelihood from econometrics into pharmacokinetics. Like
the NPML approach, the SNP approach provides an esti-
mate of the entire distribution of the interindividual ran-
dom effects. The SNP approach maximizes the likelihood
over a class of distributions restricted to have a smooth
density instead of maximizing the likelihood over all
distribution functions, as does the NPML method. This as-
sumption of smoothness is flexible enough to allow heavy-
tailed, multimodal, and skewed distributions to be character-
ized, but prevents kinks, jumps, and oscillatory behavior.62

Also, this method relies on maximizing the likelihood of
the set of observations of all individuals to estimate the dis-
tribution of the random effects. The basic conceptual
framework remains the same as that described for the pop-
ulation model in the “Models” subsection of the first in-
stallment in this series of tutorials.1 The representation of
the probability distribution and calculation of the likeli-
hood are different from the NONMEM and NPML ap-
proaches. It has been shown by Gallant and Nychka63 that
the smooth distribution can be presented as an infinite se-
ries expansion, and they provide a full mathematical de-
scription. The SNP approach uses a finite number of lead-
ing terms resulting from an approximation of the infinite
expansion. A single tuning parameter determines the num-
ber of terms retained. The density is multivariate normal if
the value of this tuning parameter equals zero. The distri-
bution becomes more flexible the larger the value of the
tuning parameter. An important step in the modeling pro-
cedure is the selection of an appropriate value of this tun-
ing parameter.61 The density of the random effect parame-
ters is represented by a multivariate normal distribution
multiplied by a polynomial. The SNP approach computes

the integral present in the population likelihood by quadra-
ture. This is another useful feature of this approach. This
obviates the use of the linearization approximation to the
likelihood used in the NONMEM approach. Unlike the
NPML approach, standard errors can be computed for the
model parameters and used for inference. 

The SNP approach is implemented in a public domain
FORTRAN program called NLMIX. Experience with this
approach is still very limited, and only a few simulations
have evaluated the ability of the method to reveal multiple
modes in the random effects density under conditions like-
ly to be encountered in practice.

A method similar to the SNP approach was proposed by
Fattinger et al.64 to explore the complete distribution of in-
terindividual effects using the FOCE approach in the
NONMEM program. The method uses a monotone non-
decreasing spline to transform the normally distributed in-
terindividual random effects. The model for the interindi-
vidual random effect model is given as:

φi = g(θ, xi) + sp(ηi) Eq. 16

where sp(..) represents a monotone non-decreasing spline
of which the parameters are estimated. Because splines are
not multivariate, a different spline is used for each of the
elements of ηi. The spline function transformation is very
flexible and allows appropriate representations of skewed,
heavily tailed, or multimodal distributions.

Summary

Thus far, the principles that serve as the foundation and
the methods for PPK model estimation have been present-
ed. These concepts are important so that the application of
PPK will be executed in an informed manner. The current
article serves as a bridge to the final PPK tutorial paper,
which will address application of PPK modeling with in-
formative examples. 
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RÉSUMÉ

OBJECTIF: Présenter, comparer, et mettre en relief les diverses approches
permettant l’estimation des paramètres pharmacocinétiques
populationnels en ce qui concerne les bases mathématiques, les aspects
statistiques, les logiciels de mise en œuvre, et les revendications sous-
jacentes.

MÉTHODE: L’information sur la pharmacocinétique de population a été
repérée par une recherche sur MEDLINE (janvier 1979 à juin 2002) et
une bibliographie d’articles de revues et d’ouvrages. Cette information
est utilisée conjointement avec l’expérience pour expliquer les diverses
approches méthodologiques de la pharmacocinétique de population.

RÉSUMÉ: Différentes méthodes d’estimation sont examinées, avec leurs
avantages et leurs limites, depuis les approches par moyennage de
données brutes et par analyse de données brutes poolées jusqu’aux
approches de modèles non linéaires à effets mixtes en passant par les
approches en 2 étapes.

CONCLUSIONS: Les méthodes d’estimation de pharmacocinétique de
population qui reposent sur la caractérisation d’effets mixtes (fixes et
aléatoires) sont connues pour produire des estimations des paramètres
pharmacocinétiques d’une population moins biaisées que celles
obtenues avec les approches utilisant les données brutes ou avec
l’approche standard en 2 étapes. Le logiciel NONMEM est le plus
largement employé pour la caractérisation des pharmacocinétiques de
population.
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