

## PRESENTED BY

## Mr. M Raj Kumar

Dean of Academics
Department of Pharmaceutics
IMOther hrheresa Institute of
Pharinaceutical leducation and Research,


YOUNGSTERS ARE SO RESULTORIENTED NOWADAYS THAT WE ACTUALLY FORGET ABOUT THE PROCESS.
THE PROCESS IS MORE
IMPORTANT THAN THE RESULTS,
AND IF YOU TAKE CARE
OF THE PROCESS,
YOU WILL GET THE RESULTS
-MSDMDNI

## HOW TO START GPAT PREPARATION

## PROCESS INVOVLED IN GPAT PREPARTION

## Unit operations involved in GPAT preparations

1. Fixing the Aim
2. Attending GPAT Classes
3. Understanding the Concepts
4. Preparation
5. Assessing yourself
6. Clearing your doubts
7. Application of what you learn
8. Getting result

The combination of unit operation is called process which gives you the product (result)If your process is validated time to time by assessments and rectify your mistakes than finally you will get a good and useful

## PHARMACEUTICAL CALCULATIONS

## DONT FDAR ABOUT MATHAMATICS

## ADDITIONS

## SUBSTRACTIONS

## MULTIPLICATIONS

## DIVISIONS



## Two systems of Weights and Measures

## The imperial system



The metric system


Kilogram $(\mathrm{Kg})$ is the standard

## CONTPNTS

REDUCING 8 ENLARGING CALCULATIONS PERCENTAGE CALCULATIONS

## ALLIGATION MBTHOD

## ISOTONICITY CALCULATIONS

PEDIATRIC DOSE CALCULATIONS
PROOF SPRIT CALCULATIONS


## RĐDUCING \& BNLARGING CALCULATIONS

The pharmacist is often required to reduce or enlarge a formula
Example for reducing calculations:
What quantities should be used to prepare 100 g of paste from the fallowing formula


$$
\begin{array}{ll}
\text { Mineral oil - } & 6 \text { parts } \\
\text { Nystatin powder- } & 1 \text { part } \\
\text { Hydrocortisone powder- } & 2 \text { parts } \\
\text { Zinc oxide Ointment - } & 200 \text { parts }
\end{array}
$$

Formula for $\mathbf{1 0 0 g}$
Mineral oil -
Nystatin powderHydrocortisone powderZinc oxide Ointment -
02.87 g
00.48 g 00.96 g 95.69 g

Total parts of ingredients in the formulation

$$
=6+1+2+200=209 \text { Parts }
$$

Need to prepare for 100 g than
Mineral oil - 6 parts in 209 parts

$$
x \mathrm{~g} \text { in } 100 \text { grams }
$$

$x=6 / 209 * 100=2.87 \mathrm{~g}$ of mineral oil in 100 g of paste Nystatin- 1 parts in 209 parts
$\mathbf{x} g$ in 100 grams
$x=1 / 209 * 100=0.48 \mathrm{~g}$ of Nystatin in 100 g of paste Hydrocortisone powder- 2 parts in 209 parts $\mathbf{x} g$ in 100 grams $x=2 / 209 * 100=0.96 \mathrm{~g}$ of Nystatin in 100 gof paste Zinc oxide ointment - 200 parts in 209 parts $\mathbf{x} g$ in 100 grams $x=200 / 209 * 100=95.69 g$ of Nystatin in 100 g of paste

## RĐDUCING \& BNLARGING CALCULATIONS

Example for Enlarging calculations:
What quantities should be used to prepare 300 g of paste from the fallowing formula

Mineral oil -
Nystatin powderHydrocortisone powderZinc oxide Ointment -

6 parts
1 part
2parts
200 parts
Formula for $\mathbf{3 0 0 g}$
Mineral oil -
Nystatin powderHydrocortisone powderZinc oxide Ointment -
008.61g
001.44 g
002.87 g
287.08 g

Total parts of ingredients in the formulation

$$
=6+1+2+200=209 \text { Parts }
$$

Need to prepare for 300 g than
Mineral oil - 6 parts in 209 parts
$\mathbf{x} g$ in 300 grams
$x=6 / 209 * 300=8.61 \mathrm{~g}$ of mineral oil in 300 g of paste
Nystatin- 1 parts in 209 parts

$$
x \mathrm{~g} \text { in } 300 \text { grams }
$$

$x=1 / 209 * 300=1.44 \mathrm{~g}$ of Nystatin in 300 g of paste
Hydrocortisone powder- 2 parts in 209 parts
$\mathbf{x g}$ in 300 grams
$x=2 / 209 * 300=2.87 \mathrm{~g}$ of Nystatin in 100 g of paste Zinc oxide ointment - 200 parts in 209 parts $\mathbf{x g}$ in 300 grams
$x=200 / 209 * 300=287.08 \mathrm{~g}$ of Nystatin in 300 g of paste

## PERCENTAGE CALCULATIONS

\% W/V (Percentage Weight in Volume)
\% V/V (Percentage Volume in Volume)
\% V/W (Percentage Volume in Weight )
\% W/W (Percentage Weight in Weight)

## Preparation of 1\% Solution

Preparation of 1\% W/V Solution in Imperial system
1 gr solid in solvent to produce 110 minim 4.375 gr solid in solvent to produce 1 fluid ounce 35 gr solid in solvent to produce 1 fluid ounce

Preparation of 1\% Solution in Metric system 1 g solid in solvent to produce $100 \mathrm{ml}-1 \% \mathrm{w} / \mathrm{v}$ 1 g solid in solvent to produce $100 \mathrm{~g}-1 \% \mathrm{w} / \mathrm{w}$ 1 ml solid in solvent to produce $100 \mathrm{ml}-1 \% \mathrm{v} / \mathrm{v}$ 1 ml solid in solvent to produce $100 \mathrm{~g}-1 \% \mathrm{v} / \mathrm{w}$

## \% W/V (Percentage Weight in Volume)

Example for percentage calculations:
Calculate the quantity of sodium chloride required to prepare 400 ml of a $0.9 \%$ solution

## Calculation

1 g with solvent to produce 100 ml makes $1 \%$ w/v solution
$1 \times 0.9 \mathrm{~g}$ with solvent to produce 100 ml makes $0.9 \% \mathrm{w} / \mathrm{v}$ solution
$(0.9 \times 400) / 100 \mathrm{~g}$ with solvent to produce 400 ml makes $0.9 \% \mathrm{w} / \mathrm{v}$ of solution

$$
\begin{aligned}
& (0.9 \times 400) / 100 \mathrm{~g} \\
& =3.6 \mathrm{~g}
\end{aligned}
$$

Hence 3.6 g of sodium chloride is dissolved in water to produce 400 ml makes $0.9 \% \mathrm{w} / \mathrm{v}$ solution

1 g in 100 ml -1\%
0.9 g in 100 ml -x

$$
\begin{aligned}
& 1 \mathrm{~g} \quad-1 \% \\
& 0.9 \mathrm{~g} \quad-\mathrm{x} \\
& \mathrm{X}=(1 \times 0.9) / 1 \\
& =0.9 \%
\end{aligned}
$$

## \% V/V (Percentage Volume in Volume)

Example for percentage calculations:
Prepare 600 ml of $60 \%$ alcohol from $95 \%$ alcohol

## Calculation

Volume of $95 \%$ alcohol to be taken
$=$ Volume required $\times$ Percentage required Percentage used
Volume Required $=600 \mathrm{ml}$
Percentage required = 95\%
Percentage used = 60 \%
Than
$=(600 \times 60) / 95$
$=379 \mathrm{ml}$


## \% W/W (Percentage Weight in Weight)

Example for percentage calculations:
How many grams of drug substance should be used to prepare 240 g of a $5 \% \mathrm{w} / \mathrm{w}$ solution in water

```
Calculation
Drug substance to be taken
\(=\) weight required \(\times\) Percentage required Percentage used
Volume Required = 240 g
Percentage required = 5\%
Percentage used = 100 \%
Than
\(=(240 \times 5) / 100\)
\(=12 \mathrm{~g}\)
```


,

## ALLIGATION MBTHOD

When the calculation involves mixing of two similar preparations of different strength to produce a preparation of intermediate strength, the allegation method is used


## ALLIGATION MBTHOD

When the calculation involves mixing of two similar preparations of different strength to produce a preparation of intermediate strength, the allegation method is used

MODEL 1 - Preparation from 1 concentration and water

MODEL 2 - Preparation from 2 concentration

MODEL 3 - Preparation from 3 concentration

MODEL 4 - Preparation from 4 concentration

## ALLIGATION METHOD-MODEL 1

Calculate the volume of $95 \%$ alcohol required to prepare 600 ml of 70percent alcohol


Stronger percentage = $95 \%$
Weaker percentage $=0$ \%
Required percentage = 70 \%
Required volume $=600 \mathrm{ml}$
No of parts of $95 \%$ alcohol = 25 parts
No of parts of water $=70$ parts
Total parts $=25+70=95$ parts
Amount of Alcohol should be taken from 95\%

$$
=(70 \times 600) / 95=442.10 \mathrm{ml}
$$

Amount of Water should be taken

$$
=(25 \times 600) / 95=157.90 \mathrm{ml}
$$

## ALLIGATION MBTHOD-MODEL 2

How many grams of 2.5 \% hydrocortisone cream should be mixed with 360 g of $0.25 \%$ cream to take a $1 \%$ hydrocortisone cream ?


## ALLIGATION METHOD-MODEL 3

Calculate the proportion of $15 \%, 8 \%, 3 \%$ alcohol required to make $\mathbf{6} \%$ of alcohol 500ml
Stronger percentage $=15 \%$
Stronger percentage $=8 \%$
Weaker percentage $=3 \%$
Required percentage $=6 \%$
Required volume $=500 \mathrm{ml}$
No of parts of $15 \%$ alcohol $=3$ parts
No of parts of $8 \%$ alcohol $=3$ parts
No of parts of $3 \%$ alcohol $=11$ parts
Total parts $=3+3+11=17$ parts
Amount of Alcohol should be taken from $15 \%$
$\& 8 \%$ alcohol $=13 \times 500) / 17=88.24 \mathrm{ml}$
Amount of Alcohol should be taken from $3 \%=$
$(11 \times 500) / 17=323.52 \mathrm{ml}$

## ALLIGATION METHOD-MODEL 4

Calculate the amount of $70 \%, 60 \%, 40 \%$, and $30 \%$ should be mixed to get $50 \%$ alcohol of 500 ml .


## ISOTONICITY CALCULATIONS

Isotonicity pertains to the state of being isotonic, or having equal tension or tonicity. At the cellular level, isotonicity may pertain to a property of a solution in which its solute concentration is the same as the solute concentration of another

Freezing point depression or cryoscopic method

Molecular concentration method

Sodium chloride equivalent method

White Vincet method
\% of adjusting substance needed = (0.52-PSM*a)/b
PSM= Percentage strength of medicament $a=$ freezing point of unadjusted solution $b=$ freezing point of $1 \% \mathrm{w} / \mathrm{v}$ of adjusting solution

Molecular concentration method
\% of adjusting substance needed $=0.03 \mathrm{M} / \mathrm{N}$
M = Gram Molecular weight
$\mathrm{N}=\mathrm{No}$ of ions into which the substance is ionized

Sodium chloride equivalent method
\% of adjusting substance needed $=0.9-$ PSM $^{*} \mathrm{E}$

> PSM= Percentage strength of medicament E= Sodium chloride equivalent (quantity of Nacl i.e equivalent to 1 g of drug )

## White Vincet method

$$
\mathbf{V}=\mathbf{W} \times \mathbf{E} \times 111.1
$$

$\mathbf{V}=$ Volume of isotonic solution in ml that can be prepared by dissolving drug in water

W= Weight of the drug
$\mathrm{E}=$ Sodium chloride equivalent

## Freezing point depression or cryoscopic method

\% of adjusting substance needed = (0.52-PSM*a)/b PSM= Percentage strength of medicament $a=$ freezing point of unadjusted solution $b=$ freezing point of $1 \% \mathrm{w} / \mathrm{v}$ of adjusting solution

Find out the concentration of sodium chloride required to make a 1 percent solution of boric acid, isotonic with blood plasma
Given: The freezing point of $1 \% \mathrm{w} / \mathrm{v}$ solution of boric acid is $-288^{\circ} \mathrm{C}$ The freezing point of $1 \% \mathrm{w} / \mathrm{v}$ solution of Sodium chloride is $-0.576^{\circ} \mathrm{C}$ Apply formula

$$
\begin{aligned}
& =(0.52-0.288 \times 1) / 0.576 \\
& =0.403 \% \mathrm{w} / \mathrm{v}
\end{aligned}
$$

Molecular concentration method
$\%$ of adjusting substance needed $=0.03 \mathrm{M} / \mathrm{N}$ M = Gram Molecular weight $\mathrm{N}=\mathrm{No}$ of ions into which the substance is ionized

Find the proportion of dextrose needed to form a solution isotonic with blood plasma
Molecular weight of dextrose $=180$
Dextrose is nonionising substance ( $\mathrm{N}=1$ )
Than $0.03 \times 180 / 1$

$$
=5.4 \mathrm{~g} / 100 \mathrm{ml}
$$

Calculate the gram of sodium chloride needed to make 30 ml of a $2 \%$ isotonic physostigmine salicilate solution using sodium chloride method.
$E$ value of physostigmine salicilate $=0.16$
PSM = 2.0 \%
Volume of preparation required $=30 \mathrm{ml}$
For equation PSM $=0.9-$ (PSM E of medicament)
$=0.9-(2 \times 0.16)=0.9-0.32=0.58 \%$
The above strength is valid for 100 ml since is expressed in percent. It should be prepared from 30 ml of solution For 100 ml of solution, sodium chloride required $=$ 0.58

For 30 ml of solution, sodium chloride required $=$ ?
$30 \times 0.58 / 100=17.4 / 100=0.174 \mathrm{~g}$ of sodium chloride

## POSOLOGY

Posology refers to the calculation of doses for children.

1. Proportion to Age :-
(a) Young's formula:

Dose for a child $=\frac{\text { Age }(\text { years })}{A g e+12} \times$ Adult dose


- Example problem for young's formula

What will be the dose for a child of 5 years if the adult dose of a drug is 400 mg .

Dose of the child $=\frac{A g e(y e a r s)}{A g e+12} \times$ Adult dose

$$
\begin{aligned}
& =\frac{5}{5+12} \times 400 \\
& =117 \mathrm{mg} \text { (approximately) }
\end{aligned}
$$

(b) Dilling's formula:

Dose of a child $=\frac{A g e(y e a r s)}{20} x$ Adult dose

The above formula is used for calculating the doses of a children in between 4 to 20 years of age.
Example problem:
oars if the adult dose of a drug is 600 mg


Dose of a child $=\frac{10}{20} \times 600$

$$
=300 \mathrm{mg}
$$

## (c) Freid's formula:

## Dose for a child $=\frac{\text { Age in months }}{150} \times$ Adult dose

The above formula is applicable only for infants.
Example problem:
What is the dose for an 8 months old infant if the average adult dose of a drug is 250 mg

$$
\begin{aligned}
\text { Dose for the child } & =\frac{8}{150} \times 250 \\
& =13.3 \mathrm{mg}
\end{aligned}
$$

(2) Calculations based on body weight:

Catzel rule:
Dose for the child $=\frac{\text { Surface area of child }}{\text { Surface area of Adult }} \times$ Adult dose
The average body surface area for an adult $=1.73 \mathrm{~m}^{2}$ Hence
Dose for the child $=\frac{\text { Surface area of child }}{1.73 \mathrm{~m}^{2}} \times$ Adult dose

Example problem for calculations based on body weight
$\square$ Calculate the dose for a child that has a body surface area of $0.57 \mathrm{~m}^{2}$, when the adult dose of a drug is 50 mg .

Child dose $=\frac{\text { Surface area of child }}{1.73 \mathrm{~m}^{2}} x$ Adult dose

$$
\begin{aligned}
& =\frac{0.57}{1.73} \times 50 \\
& =1.65 \mathrm{mg}
\end{aligned}
$$



## Calculations based on body weight:

Clarke's rule:-

- Dose $=\frac{w t \text { in } l b}{150} \times$ Adult dose $(m g)$
- $\quad$ Dose $=\frac{w t \text { in } k g}{70} \times$ Adult dose $(m g)$

Rule is applicable only when child dose is less than 150 lb or 70 kg .

- Example problem for calculations based on body weight

The dose of a drug is $5 \mathrm{mg} / \mathrm{kg}$ body weight. How much of drug required for a boy of 12 years weighing 21 kg .

$$
\begin{aligned}
\text { Dose } & =\frac{21}{70} \times 5 \mathrm{mg} \\
& =1.5 \mathrm{mg}
\end{aligned}
$$

## (3) Calculations based on body surface area:

Most accurate method commonly used in onchology department Mosteller rule:

$$
\operatorname{BSA}\left(\mathrm{M}^{2}\right)=\sqrt{h t(\mathrm{~cm}) x w t(k g) / 3600}
$$

Example problem for calculations based on body surface area
$\square$ Calculate the BSA of a boy of height 165 cm and weighing 65 kg .

$$
\mathrm{BSA}=\sqrt{160 \times 65 / 3600}
$$



## Proof spirit calculations

## Introduction

- The strength of alcohol is calculated in proof degrees. The Indian standards of $100 \%$ proof spirit is equal to $57 \% \mathrm{v} / \mathrm{v}$ of ethyl alcohol.

$$
\text { i.e., } 100 \% \text { p.s }=57 \% \mathrm{v} / \mathrm{v} \text { ethyl alcohol }
$$

- If the value is more than $57 \%$ then it is said to be as over proof spirit.

If the value is less than $57 \%$ then it is said to be as under proof spirit.

## (Introduction contd....)

- In India, the exercise duty is calculated in terms of rupees per liter of proof alcohol. So, any percentage volume in volume of alcohol can be converted into proof strength and vice versa by using the following method.
i. Multiply the percentage strength of alcohol by 1.753 and deduct 100 from the product.
ii.


If the result is positive, it is known as over proof If the result is negative, it is known as under proof.

- 1.753 is obtained as follows:
57.1 volume of ethyl alcohol $=100 \mathrm{ml}$ of proof spirit.

1 volume of ethyl alcohol $=100 / 57.1$
$=1.753$ volume of proof spirit
Example problems for Proof Spirit calculations
Calculate the strength of $30^{\circ}$ O.P and $40^{\circ}$ U.P

$$
30^{\circ} \text { OVER PROOF }=100+30=130
$$

$$
40^{\circ} \text { Under proof }=100-40=60
$$

## (Problem Contd....)

$$
\begin{aligned}
\text { Alcohol strength } & =\frac{100+30}{1.753} \\
& =\frac{130}{1.753} \\
& =74.15 \% \mathrm{v} / \mathrm{v}
\end{aligned}
$$

$$
\begin{aligned}
\text { Alcohol strength } & =\frac{100-40}{1.753} \\
& =\frac{60}{1.753} \\
& =34.23 \% \mathrm{v} / \mathrm{v}
\end{aligned}
$$

Check:
If strength is $74.15 \% \mathrm{v} / \mathrm{v}$
$74.15 \times 1.753-100=129.9-100=+29.9^{\circ}$ or $30^{\circ}$ O.P If strength is $34.23 \% \mathrm{v} / \mathrm{v}$

$$
34.23 \times 1.753-100=60.00-100=-40^{\circ} \text { U.P }
$$

## Whawn whw

2. What is the proof strength of $95 \% \mathrm{v} / \mathrm{v}$ alcohol.

By applying the formula:

$$
\text { percentage strength of alcohol } \times 1.753-100
$$

$$
=95 \times 1.753-100
$$

$$
=166.53-100
$$

$$
=+66.53^{\circ} \mathrm{O} . \mathrm{P}
$$




