PHARMACOKINETICS

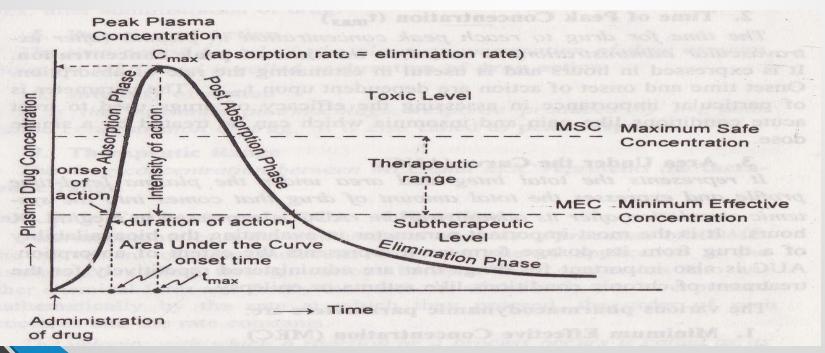
- Duration of drug therapy ranges from a single dose (acute condition) to drugs taken life-long(chronic conditions).
- The frequency of administration of a drug in a particular dose is called as dosage regimen
- Depending upon the therapeutic objective, the duration of drug therapy and the dosage regimen decided
- Therapeutic and the toxic effects depend on the concentration of drug.

The drug fails to elicit a therapeutic response when the concentration is below the effective level and precipitates adverse reactions when above the toxic level

• The plasma drug concentration between these two limits is called as the therapeutic concentration range or therapeutic window

• To achieve this, knowledge of not only ADME but also of the kinetics of these processes is a must.

Pharmacokinetics


Defined as the kinetics of ADME and their relationship with the pharmacological, therapeutic or toxicological response in man and animals

• Theoretical aspect: Involves development of pharmacokinetic models to predict drug disposition.

• Experimental aspect: Involves development of biological sampling techniques, analytical methods for measurement of drug concentration in biological samples.

Plasma Drug Concentration-Time Profile

- A direct relationship exists between the drug concentrations at the site of action & the concentration of drug in plasma.
- Pharmacokinetic & Pharmacodynamic parameters can be evaluated

PHARMACOKINETIC PARAMETERS

Peak plasma concentration (C_{max})

The point of maximum concentration of drug in plasma is called as the peak & the concentration of drug at peak is known as peak plasma concentration or peak height concentration

• Represents maximum drug concentration & is expressed in µg/ml

• It depends upon administered dose, rate of absorption & elimination. It is related to the intensity of pharmacological response

Time of Peak Concentration (t_{max})

- The time for drug to reach C_{max} after extravascular administration & is expressed in hours
- Useful in estimating the rate of drug absorption
- Useful for assessing the efficacy of drugs used to treat acute condition

Area under the curve (AUC)

- Represents the total integrated area under the plasma level-time profile & expressed in µg/ml*hours
- Express the total amount of drug that's comes into the systemic circulation i.e. extent of absorption
- Determined by Planimeter Method, Cut and weigh Method etc.

Pharmacodynamic Parameters

Minimum Effective Concentration (MEC)

- Minimum concentration of drug in plasma (receptor site) required of produce the therapeutic effect.
- Concentration of drug below MEC is said to be in the sub-therapeutic level

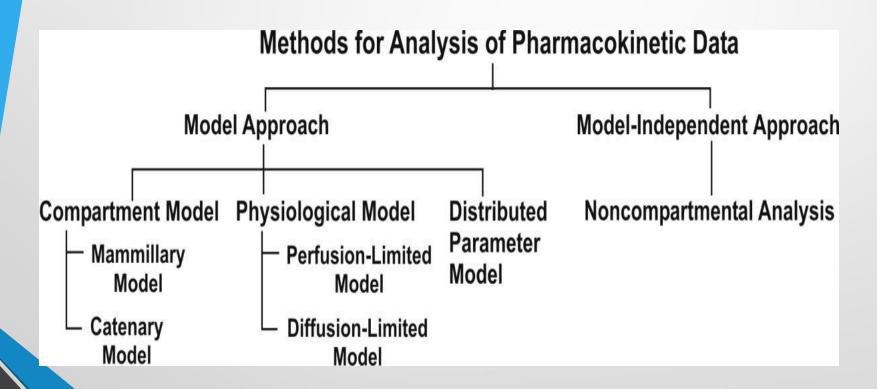
Maximum safe concentration (MSC) / Minimum toxic concentration (MTC)

- Concentration of drug in plasma above which adverse or unwanted effect are precipitated
- Concentration above MSC is said to be in the toxic level.

onset of action: Beginning of pharmacological response is onset of action & occurs when the plasma drug concentration just exceeds MEC.

Onset time: It corresponds to the time for the plasma concentration to reach MEC

Duration of action: the time period for which the plasma concentration of drug remains above the MEC level is called as duration of drug action.


Intensity of action: Maximum pharmacological response produced by the peak plasma concentration of drug.

Therapeutic range: Drug concentration between MEC and MSC represents the therapeutic range. It is also known as therapeutic window.

Therapeutic index: The ratio of MSC to MEC. It is also defined as the ratio of dose required to produce toxic or lethal to therapeutic effect.

Pharmacokinetic Approaches

Drug movement within the body is a complex process. Major objective is to develop a simple approach to describe, analyse and interpret the data obtained during *in vivo* drug disposition studies.

A model is a hypothesis that provide concise means of expressing mathematically or quantitatively, the time course of drug(s) throughout the body & compute meaningful PK parameters.

Applications of Pharmacokinetic models.

- Characterizing the behavior of drugs in patients
- Predicting the concentration of drug in various body fluids with any dosage regimen.
- Predicting the multiple-dose concentration curves from single dose experiments.

- Calculating the optimum dosage regimen for individual patients.
- Evaluating the risk of toxicity with certain dosage regimens.
- Correlating plasma drug concentration with pharmacological response.
- Evaluating the bioequi/bioinequivalence between different formulations of the same drug.
- Determining the influence of altered physiology/diseased sate on drug ADME.